
Journal of Statistical Physics, Vol. 48, Nos. 1/2, 1987

A New Random-Number Generator for
Multispin Monte Carlo Algorithms

L. Pierre, 1 T. Giamarchi, 2 and H. J. Schulz 2

Received March 13, 1986; revision received March 25, 1987

We develop a novel multispin coded random number generator algorithm to
compute bits equal to 1 with probability p. Compared to previously used
algorithms, this generator is at least equally fast and allows for an arbitrary
accuracy of the computed probability without any significant increase in time.
An explicit implementation of the algorithm is given for a Cray-1 vector com-
puter, and the modifications for other machines are discussed. Finally, the
algorithm is tested by computing the magnetization of the two-dimensional
Ising model. The measured speed of the program is 57 million spin-flips per
second. The agreement with theoretical values is found to remain very satisfying
even when quite close (-~ 0.5 %) to the critical temperature.

KEY WORDS: Random numbers; Monte Carlo; multispin coding; parallel
computation; Ising models.

1. I N T R O D U C T I O N

The Monte Carlo (MC) method has proven to be a very powerful way of
studying statistical systems and phase transitionsJ 1) However, near the
critical point relaxation times increase dramat ical ly--roughly as
min(L, ~)~, where L is the linear size of the system, ~ the correlation length
of an infinite system at the same temperature, and z the dynamic critical
exponent (2) (z -~ 2 for the Ising model). In order to avoid errors due to the
finite size of the system or insufficient statistics, one has to use rather large
lattices and compute an important number of configurations. This entails
an enormous computat ional demand. A number of methods have been
put forward to overcome this difficulty and increase the accuracy of the

UFR de Sciences Economiques, Universit6 de Paris X Nanterre, 92001 Nanterre, France.
2 Laboratoire de Physique des Solides, Universit6 de Paris-Sud, 91405 Orsay, France.

135

0022-4715/87/0700-0135505.00/0 �9 1987 Plenum Publishing Corporation

136 Pierre, Giamarchi, and Schulz

result (specially designed computers, (3) Monte Carlo renormalization
techniques, (4) multispin coding techniques, (s'6) vector algorithms, (7) but
typical configurations always remain to be computed. In all these programs
the most important part of computational time is devoted to the generation
of the different configurations, the part devoted to the measurements being
in most cases negligible. Moreover, in an efficiently written program the
time spent computing the gain or loss in energy (if one uses an algorithm of
the Metropolis type (8) of a given transformation is also quite small. Much
of the time is used to determine bits (i.e., elements of {0, 1}) equal to 1
with a probability p [p C 1/2, typically p = e x p (- f i A E)] necessary to
decide whether or not the transformation can be accepted. In fact, in many
MC programs, at least half of the time is spent computing random num-
bers! In the first multipsin algorithms (7) the determination of the random
bits was not multispin coded. This problem was solved by Williams and
Kalos. (6) However, in their algorithm, reducing the time spent in this part
of the program implies increasing the systematic error on the Boltzmann
factor p, which from the outset limits the accuracy of the results. This may
be especially detrimental in models more complicated than the nearest
neighbor Ising model, i.e., in cases with more than just one energy
parameter. We here give an algorithm to compute bits with a probability p,
which is at least as efficient in time as previously used ones, and allows for
an arbi trary accuracy without any significant increase in time. The program
described here has been specially built to take full advantage of the pipeline
and vector structure of a Cray-1 computer, ~ but with minor changes in
the program, the algorithm can be used on other general machines as well
as on specially designed processors or array-processor machines. Finally, to
test the random-number generator we use it on a Monte Carlo program for
the 2D Ising model. We compute the magnetization and compare it to the
exact result./l~ The implementation of the algorithm on a Cray-1 computer
is given in the Appendix.

2. S O M E S I M P L E R A N D O M - N U M B E R G E N E R A T O R S

A very good algorithm commonly used to generate pseudorandom bits
equal to 1 with probability 1/2 is the one advanced by Kirkpatrick and
Stoll, (~1) which uses exclusive-or (denoted (~). It generates a sequence of
random bits by the recursion relation

r(i) = r(i -- a) (~ r(i -- b) (2.1)

where a and b (a > b) are numbers (12) chosen in order to obtain the
maximum period of 2 a - 1. One now has to use these b~/2 bits (i.e., bits

Random-Number Generator for Multispin MC Algorithms 137

equal to 1 with a probability 1/2) to generate bp bits (i.e., bits equal to 1
with a probability p).

Let us suppose that p has a binary representation on n bits:

p = 0.p~ P2 P3"'" P,, (2.2)

The usual method is to generate a sequence of n b~/2 bits, giving the
number

seq = O.b] b i b ; . . , bl, (2.3)

and to compare it with p. The result of the comparison seq < p is obviously
equal to 1 with a probability p ("true" will be represented by a bit 1). The
accuracy ofp is 1/2 n. In order to obtain Boltzmann factors with a sufficient
accuracy, n must be large enough. There are three simple algorithms to
perform the comparison:

Algori thm I. One way (used by Williams and Kalos/61) to perform
the comparison is to make a bit-by-bit subtraction of.the two numbers seq
and p. The borrow will give the result of the comparison (0 if seq >~ p). This
subtraction of two numbers takes four logical operations per bit of p. We
deal here with bits because, as pointed out previously, (5'6) in order to
increase the speed of the program, it is convenient to deal with words of
independent bits. The logical operation handles of course the whole word
("multispin coding"). This first algorithm can be trivially improved.

Algori thm 2. If p is known a priori (i.e., if the temperature remains
fixed), one can write a different program for each p (or group of fixed p)
and the computation of the borrow takes only one logical operation per bit.
Another program can generate the instructions before the compilation.
This method is suitable, for example, for systems with a discrete symmetry,
where the number of independent Boltzmann factors is small (for example,
in the 3D Ising model there are only three "a priori" Boltzmann factors at
a given temperature in the case of a Metropolis-like simulation).

Algorithm 2 needs n bl/2 bits plus n/l (l is the length of the words)
instructions to generate a bp bit. Algorithm 1 also uses n b 1~2 bits, but 4n/l
instructions per bp bit.

The vectorization of the two algorithms described above is
straightforward. One deals with a vector of words instead of a single word,
the algorithms remaining unchanged. Let us assume that it takes one cycle
to handle a word (this can be sensibly achieved on a vectorized version of
the programs by using sufficiently long vectors). Then even the "improved"
version of algorithm 1 introduced as algorithm 2 will require 3n memory

138 Pierre, Giamarchi, and Schulz

accesses and n logical operations to generate the needed hi~ 2 bits plus n
logical operations to compute the lbp bits of a word. On the Cray-1 (and
certainly on most vector computers) due to the pipeline structure the 2n
logical operations can be performed during the 3n memory accesses. It will
thus take at least 3n cycles to compute a word of l bp bits with accuracy n.
For the 3D Ising model, for example, which needs three different
Boltzmann factors, if we want an accuracy of 1 / 2 5 6 - 0 . 4 % , at least 72
cycles will be required simply to generate the random bp bits. This
obviously constitutes the main part of the program (for the 2D Ising model
program described below the remaining part of the program takes 12
logical operations!). Moreover, time increases linearly with the accuracy.

It is therefore fundamental in MC programs to find a way of reducing
the time devoted to the random-number generator without any loss in
accuracy.

3. A N E W A L G O R I T H M

3.1. S i n g l e - B i t Vers ion

Let us suppose that we have only a single bp bit r to generate. We do
not need to subtract seq and p. We only want to compare them, i.e., to find
the first position after the decimal point where p and seq differ and to com-
pare the bits at this position. For convenience, we suppose that p has an
infinite accuracy, i.e., ps is defined for all i > 0. This can be achieved by
assuming p~ = 0 if i is large. One then has the following algorithm:

Algorithm 3. We compare b'l with Pl , b~ with Pz,-.., until we find N
such that bN r PN. The result is r = (Pzv > b~v), i.e., r = PN, since b'u r PN"

Let bi = not (b; | p~). The algorithm simplifies as follows:

Algorithm 4. We test h i , b2,.., until we find N such that b N = 0. The
result is then r = PN"

Since the b~ are indkependent bl/2 bits, so are the bi. We thus do not
need to generate the b; and then to compute the bits b i. It is equivalent and
simpler to generate directly the bits bi as bl/2 bits.

Thus N is the number of bi bits used and the position of the first zero
bi (note that the probability that no zero bi exists is zero). Now, N = i if
(bl, b2 b i)= (1, 1 1, 0), which happens with a probability 1/U. The
value of N is 1, 2 n with probabilities 1/2, 1/4 1/2 n, The expected
number of bg used is the average value of N: { N) = 2.

Random-Number Generator for Multispin MC Algorithms 139

3.2. Multispin Version

The simultaneous computat ion of several bits with the Algorithm 4
seems difficult: N (the number of steps for a given bit) depends randomly
on the bit computed and is not bounded a priori. We will thus have to stop
the comparison for different bits at different times and terminate only when
all the different bits are determined. The test given in Algorithm 4 (b~ = 0)
does not straightforwardly generalize to several bits in parallel. We give in
this section a different realization of the same algorithm which can be
multispin coded.

In order to determine the termination of the algorithm, let us define
the sequence s~ of bits by

s i = l o i < N (3.1)

i.e., s~ = 1 if b 1 = b 2 b i = 1. Hence, s~ = b 1 A b 2 A . - . A b~ (where /x
means the logical product AND). The si can thus be computed using the
recursion relation:

So = 1 (3.2)

S i ~ Si_ 1 A b i

and si 1 - s i = 1 if i = N and 0 otherwise. Hence, r, which is PN, can be
expressed as

r = ~ (Si_l--si)Pi (3.3)
i = 1

= P l + ~ (P i + t - P i) S, (3.4)
i = 1

Equation (3.4) gives the algorithm to compute r:

A l g o r i t h m 5. We start with r = p~ and So = 1. For i = 1 to oe:

1. We computes~=s~ ~Ab~.

2. If p~=O and p~+ ~ = l, then we add si to r.

3. If pi = 1 and Pi+l = 0, then we subtract si from r.

As long as the b~ are equal to 1, s~ remains equal to 1, and r is set at
each step to p~+~. During this first phase r oscillates between 0 and 1 for
each transition 0 --* 1 or 1 --* 0 in p. When b~ is zero for the first time, si
becomes and remains zero. r does not change any more, and keeps its last
value PN" We can thus stop at any time when si = 0.

140 Pierre, Giamarchi, and Schulz

This version of the algorithm straightforwardly generalizes to a word
of independent bits or to vectors of words. One introduces a word (or vec-
tor) of independent bits si in order to treat a word (vector) of independent
bits r. The comparison must stop only when all the r's are fixed, which is
the case if and only if all the si are zero. This test (a word of bits or a
vector of words is zero) can easily be implemented on any computer.

Our algorithm permits the use of the arithmetical operations (i.e.,
addition and subtraction) even if we deal with words of independent bits,
since no carry occurs during the operations involved Algorithm 5 [cf.
Eq. (3.4) and steps 2 and 3 of Algorithm 5]. We here use the arithmetical
operations, because on the Cray-1 their cost in time is the same as the cost
of logical operations, and due to the pipeline structure both kinds of
operations can be done simultaneously (see Appendix). If on other com-
puters the arithmetical operations are slower, they can be replaced by a
logical "exclusive-or" without any change in the algorithm.

Let us consider the number of operations needed by our algorithm to
generate in parallel t random by bits. For a single bit, the number of steps
needed is the random variable N, taking the values 1, 2 with probabilities
}, J,..., respectively. For t bp bits generated in parallel, we have the indepen-
dent and identically distributed random variables N1, N2 Nt, where Nj
is the number of steps needed to compute the j t h bit. The algorithm stops
when all the bp bits are generated, which takes a (random) time M =
m a x (N 1 , N 2 Nt). As M<~k if and only if VjNj<~k, we have

P(M<~k)= fI P(N/~k)=(1-2 k)t
j = l

(3.5)

It follows that the expected value of M is

(M}= ~ P(M>k)= ~ [1-(1-2-~) ~]
k = 0 k = 0

(3.6)

As tests are expensive, it is a bad idea to put tests of si too soon. Let us
suppose we start testing for completion (s/= 0) only at the Llog2 tJth step
(LxJ means the integer part of x). If M is lower than Llog2 t J, useless steps
will be made. The number of useless steps is, on the average,

U = Llog2 tJ - (min(M, Llog2 t J)5 = Llog2 tJ -
Llog2 t J -- 1

Y, P (M > k) (3.7)
k = 0

U s i n g e - X ~ > l - x f o r 0 ~ < x ~ l , wege t

1 - e t2 k<~p(M>k)<< " 1 (3.8)

Random-Number Generator for Multispin MC Algorithms 141

From (3.8), we bound U:

0~<U~< ~ e-2k-0 .154 (3.9)
k = l

which shows that it is really useless to perform tests before the L log2 t j th
step. The average number of steps performed is, in this case,

(M2} = {max(m, Llog2 t J)}

= tlog2 t j+ ~ P(m>k)
k = tlog2 tJ

~< ~ min(1, t2 ~)~<log2t+2 (3.10)
k = 0

As the number of steps without tests is exactly Llog2 t J - 1, the average
number of tests performed is at most (log 2 t + 2) - (L l o g 2 t J - 1) ~ < 4 . In
short, in order to generate one vector of t bp bits, we use on the average
fewer than log2 t + 2 steps and we perform fewer than four tests. Actually,
on the Cray-1 we used t=4096 (64 words of 64 bits), and we started
testing at the 12tb step.

The expected number of useful steps is { M) = Y~k=o 1 -
(1 - - 2 - k) 4096 "~ 13.33.

The expected number of performed steps is 12 + F~_~21 -
(1 - - 2 k)4096,~, 13.49.

The expected number of performed steps with test is 1 + ~ = 12 1 - -
(1 - - 2 - k) 4096 "~ 2.49.

The expected number of useless performed steps is Z l ~ o (l - 2 k)4096

~- 0.15.
It is also useful to notice that the generation of one bl/2 bit costs three

memory accesses and one logical operation, while the comparison itself
costs only one logical operation per bit. It is therefore important to limit
the number of bl/2 bits necessary for the computation of the different bp
bits. In the 3D Ising model, for example, three Boltzmann factors are
needed,

p=e-pJ, p,=p2, p,,=p3 (3.11)

Supposing p to be represented on n bits, the exact values of p' and p" are
respectively represented on 2n and 3n bits. With the method currently used
(Algorithms 1 and 2), the direct computation of three independent bits r, r',
and r" with probabilities p, p', and p" results either in a loss of accuracy or
in a waste of time. However, for a given spin, only one of the three

142 Pierre, Giamarchi, and Sehulz

Boltzmann factors p, p', p" is selected. It is thus possible to use the same
sequences of bl/2 factors to compute the bp associated to a given spin. In
fact, it is more convenient to generate three independent bits p~, P2, P3
with the same probability p. The bits r, r', r" are generated by the logical
products of one, two, or three of these bits p~. It takes three sequences of
n bl/2 bits because the Pi have to be independent. More generally, let us
suppose that we have K independent Boltzmann factors for a given spin,
that we are able to compute simultaneously d bp bits with the same
sequence of bl/2 bits, and that we find I sets of d numbers
{a(i, 1) a (i , d) } c [O , l [, i varying from 1 to /, such that all the
Boltzmann factors can be obtained by

I

Pk = I~ a(i, J,.k) (3.12)
i - - I

In this formula we use the convention that Ji.k e [0, d] and a(i, 0) = 1. We
can then compute the bp bits associated to the a(i, j) , j e [1, d], for a fixed i
with the same sequence of bl/2 bits (a different sequence for each i). We can
obtain the bp bits associated with the Boltzmann factor p~ by the logical
product of the bp bits associated with the a(i, Ji, k), since they are indepen-
dant. The determination of the bp bits will thus take 3n x I memory accesses
at most. For example, let us consider a model (chiral Potts model (~3))
where the needed Boltzmann factors are p = exp(-x~) . The x~ assume the
values

E, 2E, 3E, 4E, E -
(3.13)

E+e, 2 E - e , 2E+e, 3 E - e , 3 E + e

where E and a are two positive quantities and e < E. The p can be obtained
by the product of two numbers a(i, j) = e x p [- x (i , j)] with two different
i's. The x(i, j) take the values

0, E - a , e, 4E (3.14)

for i = 1, and

0, E, 2E, 3E (3.15)

for i=2 . This corresponds to I = 2 , d = 3 , and K = 10 in the above
formulation. All the probabilities for the same i can be generated with the
same set of bl/2 bits.

Random-Number Generator for Multispin MC Algorithms 143

3.3. Summary

We use a different program for each temperature. Thus, in the
generation of a vector of V words of W bits (we have VW= t = 4096 on
Cray-1) a step consists in (1)the computation of a vector of b m bits,
which takes 3V memory accesses and V logical operations; and (2) V
logical operations and V arithmetical operation (or "exclusive-or")
according to Algorithm 5.

As previously pointed out, the algorithm will stop after at most
log2(t) + 2 steps on the average ("at most" will not be repeated in the
following). If we can compute simultaneously d sequences of probabilities
with the same b l/2-bit sequence, the complete determination of all the
Boltzmann factors will thus take 3VI[log2(t)+2] memory accesses,
VI[log2(t)+2] logical operations, and dVI[log2(t)+2] arithmetical
operations. Notice that at most I = FK/dT, where K is the number of dif-
ferent Boltzmann factors (r 7 denotes nearest upper integer).

3.4. Discussion and Comparison of the Di f ferent A lgor i thms

Let us consider a machine where the time of a scalar (involving a
single word) operation is S, whereas it is D + V/r for a V-word vector
operation; D is the startup time and r the vector to scalar speedup ratio.
We consider the time T needed to compute VWbp bits using the different
algorithms:

1. Improved version of the Williams-Kalos algorithm (Algorithm 2).

We assume that all the logical operations can be performed during the
memory accesses needed to compute the b~/2 bits. This is the case for a
Cray-1. One then has

T2 = 3n(D + V/r) (3.16)

2. Single-bit version of our algorithm (Algorithm 3),

T3 = SVW(2) (3.17)

3. Multispin (scalar) version of our algorithm (Algorithm 5).

Due to the structure of the algorithm, all the logical and arithmetic
operations (for one step) can be done simultaneously with the memory
accesses (cf. the Appendix) needed to compute one b m bit. One has

Tss = SV[Iog2(W) + 2] (3.18)

4. Vectorial version of our algorithm (Algorithm 5).

144 Pierre, Giamarchi, and Schulz

The same remark as made in point 3 applies and one has

Tsv = (D + V/r)[log2(V) + log2(W) + 2] (3.19)

Equation (3.17) shows that the bit implementation is not efficient on a
general-purpose computer, due to the gain of time in generating
simultaneously W bits {there is a ratio T3/Tss=2W/[log2(W)+2]> 1
between the bit and scalar versions}.

Equations (3.18) and (3.19) show that the time gained in the vec-
torization is partially lost because we are dealing with many more bits in
parallel and are thus making a greater number of useless operations before
completion. There is an optimal size of the vector that maximizes the
improvement due to the vectorization. On the Cray-1, we have D = S-- 11,
r = 1, and W--- 64. This gives an optimal size of - 101 for V. We therefore
choose the maximum size of vectors allowed on Cray-1, V= 64. This gives
a ratio of ~ 5 between the vector and the scalar versions on a Cray-1. This
ratio will of course be machine-dependent.

There is a ratio T2/Tsv---n/[log2(V)+log2(w)+2] between
Algorithm 2 and our algorithm. Thus, if a good accuracy (large n) is
needed, our algorithm is faster. Furthermore, due to the structure of our
algorithm, we are able to compute simultaneously d = 3 (on Cray-1)
Boltzmann factors. This means that in the case where K Boltzmann factors
are needed the ratio becomes

T2/Tsv = Kn/I[log2(WV) + 2] (3.20)

For example, for the 3D Ising model (three Boltzmann factors) our
algorithm is (for an infinite accuracy) 24/14 times as fast as Algorithm 2
(for only 1/256 of accuracy).

As far as the number of bl/2 bits needed is concerned, our algorithm is
not optimal. Fourteen bl/2 bits are required to produce a random bp bit.
Algorithm 3 (or Algorithm 4) would use only two bl/2 bits per bp bit. As
already seen, it is not worth implementing it on a general-purpose com-
puter. But as it involves logical operations only, and necessitates a very
short sequence of bl/2 bits, it would be perfectably suitable for specially
designed computers. Furthermore, Knuth and Yao (14) have given an
optimal method which requires only one b~/2 bit per random bp bit.
However, this method handles trees. This entails either conditional
branches or search in tables, i.e., memory accesses, which are both slow
operations on the Cray-1 as well as on most other machines.

Random-Number Generator for Multispin MC Algorithms 145

4. TESTS

In order to test the random-number generator, we used it in a MC
program of the two-dimensional Ising model. The program was written in
Cray-1 assembler language for reasons of efficiency (and also due to the
poor optimization of the Fortran compiler). The instructions of the
random-number generator were generated by a Fortran program for each
temperature. We limited ourselves to 40 bits of accuracy (~ 10 -12) in the
determination of the probabilities. All computations were made on a
256 x 256 lattice with periodic boundary conditions. As our purpose was
not to make real physical measurements on the 2D Ising model, we limited
ourselves to the magnetization. The initial configuration is the totally
ordered one (T = 0). After an equilibration of approximately 2 x 10 4 spin-
flip attempts for each spin, the magnetization of the whole lattice is
measured after each passage through the whole system. The results are
given in Table I with the exact values (1~ and an estimate of error bars. The
errors bars are estimated by

6m ~- (2rz /nL2) l/2 (4.1)

w h e r e L 2 is the number of spins in the lattice, n the number of
measurements, Z the static susceptibility, and r the autocorrelation time for
the magnetization. We have 10 5 measurements at each temperature. The
numerical values of Z and r are taken respectively from Refs. 15 and 16.
Computed and exact values of the magnetization agree, even when close to
the critical temperature. In order to measure the speed of the program, we
used the crude formula

(number of spins)(number of passes)
rate of spin - flip = (4.2)

time

Tablel . R e s u l t s of the Simulation on t h e 2 D I s i n g M o d e l ~

Temperature
Exact M e a s u r e d Es t ima ted

magne t i za t i on magne t i za t i on abso lu te er ror

1 0.911319 0.911337 5 x 10 -5
1.111111 0.749323 0.748497 10 -3

1.127395 0.648460 0.656104 9 x 10 -3

1.132502 0.556154 0.58429 8 x 10 -2

a In our uni ts the cri t ical t empe ra tu r e is 1.1345927.

822/48/1-2-10

146 Pierre, Giamarchi, and Schulz

The time includes the measurements, which are expected to be negligible.
On the Cray-1 on which the program was run, the measured rate was 57
million flips per second. This value is to be compared with the speed of the
other programs in the literature. As we are able to compute three
Boltzmann factors simultaneously, a 3D Ising model with this random-
number generator will reach nearly the same speed. For practical reasons,
we cannot perform simulations on another vector machine than the Cray-1.
We therefore give a comparison of the speed of the different vector
machines(17): the estimated speed of a Cray-1 is 0.16 gigaflops, whereas it is
0.4 gigaflops for a Cyber 205 6 x 2 and 1.3 gigaflops for a NEC SX-2. We
can use these numbers to estimate the speed of our program on these
machines. This gives an extrapolated speed of 142 million flips per second
on a Cyber 205 and 463 on a SX-2 computer. Of course this estimation has
to be taken with great care: we assume that this speed is a good indication
of the performance of the machines when performing vector operations,
even if logical rather than floating-point operations are concerned. It is not
obvious that this will hold in every case. The specific instructions or struc-
ture of each machine can also affect the performances. One can nevertheless
see that our program should be, if not faster than, at least comparable in
speed with the other canonical algorithms when implemented on the same
machine [98 million flips per second on a two-pipe Cyber 205~8); 251 on a
Nec 8X-209); 218 on an Array processor (2~ (the ICL array processor has a
cycle time of 200 nsec and handles 64 x 64 bits simultaneously; the cycle
time of the Cray-1 is 12.5 nsec and 64 bits are updated in one cycle; so we
expect a ratio of four between the array processor and the Cray-1)].
Moreover, the performances of our program are not related to a specific
size of the lattice, and we can evaluate the Boltzmann factors with an
infinite precision. We are also free from the problem of correlation of ran-
dom numbers that arises in Ref. 18. Of course for the Ising model it is
much more efficient to use a microcanonical algorithm (2m2) (the best way
to solve the random-number generator problem!). But it is not obvious
that for more complicated cases such an efficient and simple implemen-
tation can be found. (2~) In addition, the microcanonical algorithms have
longer relaxation time than the canonical ones.

5. C O N C L U S I O N

We have here presented a new random-number generator to compute
bits equal to 1 with a probabili ty p. This generator is adapted to multispin
coding and offers a small computat ional time as well as an arbitrary
accuracy in probabili ty without any significant increase in computational
time. Although it was designed to run on vector computers, since it uses

Random-Number Generator for Multispin MC Algorithms 147

logical operations only, it is perfectly implementable on other systems. Its
performances could even be improved on specially designed machines or
array processors where one can dispose of more than one logical unit
(which is not the case on general-purpose processors).

APPENDIX

We give here the schematic implementation of the algorithm on a
Cray-1 computer. Table II shows how vector resources of a Cray-1 are
used to compute three nonindependent vectors of b p bits from the same
sequence of b~/z bits.

In boldface we represent one step of the algorithm described in
Section 3.2.

Me, Me_b, and Me_" stand for parts of the memory of addresses i,
i - b , and i - a .

Each of the Bi, B;, BT, Si, Re, R~, R;',... stands for one of the eight
vector registers.

On respectively first, second, and third lines are the memory accesses,
the logical operations, and the arithmetical operations.

Three operations in a same column can be simultaneous, since they do
not use the same operands. However, the result of an operation can be
used immediately in another operation as it occurs for B~' and Se.

Si L 0 means that we check that all bits of vector Si are zero and stop
the computation if true.

T a b l e l l . A Schematic Description of the Implementation of the
A l g o r i t h m on a Cray-1 Computer

Clockcycle 3i Clockcycle 3i + 1 Clockcycle 3i + 2

B~ +-- M i _ b B~' +- M i _ . M i ~-- B i

S i 1.~--Si_2 A Bi_ 1 B I ~ B ~ G B [' (S i - t ~ O)

(R , ~ R, ~ + S~_~) (R; ~ R'~-I +-S, 1) (R; , ~--- R'i'-l q- S i - l)

Clockcycle 3i + 3 Clockcycle 3i + 4 Clockcycle 3i + 5

B'i+ l ~--- Mi+ l_ b B~'+ I ~--- Mi+ I_ . M i + l ,,.--- Bi+ t

Si~-- Si_ 1 A B i Bi+I~--B~+I~B~'+I (S i L 0)

(l t i + 1 ~-- Ri ~ Si) (R'i + 1 4-- R~ -[- Si) (R7+ 1 ~- R~' _+ Si)

148 Pierre, Giamarchi, and Schulz

The sequences Ri, R;, R;' have, at the end of the calculus, the values
R, R', R". Let p, p', and p" be the probabilities that the bits of R, R', and
R" are 1. If p = 0 , PIP2,..., then (Ri+l , -Ri+_Si) stands for

R i + I . - - R i + S i if p i = 0 andpt+ l= 1

Ri+ 1 +-- R i - Si i f Pi = 1 a n d Pi+ 1 = 0

nothing if p~= Pc+ 1 (which happens in half of the cases)

Actually, the three optional arithmetical operations are performed as soon
as possible, so no arithmetical operation occurs during the last third of
most of the steps.

(Si ~ 0) is performed only when i>~ 13. Thus, as explained before,
there will be only an average of two steps with tests during the calculation.

These last two points are fortunate, because R~'+~,--R;'+S~ and
Si ~- 0 cannot be simultaneous, since they both use S~. In bad cases, the
steps are longer.

ACKNOWLEDGMENTS

We thank the Centre de Calcul Vectoriel pour la Recherche,
Palaiseau, for a grant of computer time, and a referee for valuable com-
ments.

REFERENCES
1. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 5b, C. Domb and

H. S. Green, eds. (Academic Press, New York, 1976), p. 2.
2. G. F. Mazenko and O. T. Valls, Phys. Rev. B 24:1419 (1981); R. Bausch, V. Dohm,

H. K. Janssen, and R. K. P. Zia, Phys. Rev. Lett. 47:1837 (1981).
3. R. B. Pearson, J. L. Richardson, and D. Toussaint, J. Comp. Phys. 51:241 (1983);

A. Hoogland, J. Spaa, B. Selman, and A. Compagna, J. Comp. Phys. 51:250 (1983);
A.F. Bakker, C. Bruin, F. van Dieren, and H.J. Hilhorst, Phys. Lett. 93A:67 (1982);
N. H. Christ and A. E. Terrano, IEEE Trans. Comp. C 33:344 (1984).

4. R. H. Swendsen, in Real Space Renormalization (Topics in Current Physics, Vol. 30),
T. W. Burkhardt and J. M. T. van Leeuwen, eds. (Springer-Verlag, 1982), p. 57.

5. R. Friedberg and J. E. Cameron, J. Chem. Phys. 52:6049 (1970); L. Jacobs and C. Rebbi,
J. Comp. Phys. 41:203 (1981); C. Kalle and V. Winkelmann, Z Stat. Phys. 28:639 (1982).

6. G. O. Williams and M. H. Kalos, J. Stat. Phys. 37:283 (1984).
7. S. Wansleben, J. G. Zabolitzky, and C. Kalle, J. Stat. Phys. 37:271 (1984).
8. N. Metropolis, A. W. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 22:881

(1954).
9. Cray-1 Hardware Reference Manual

10. C. N. Yang, Phys. Rev. 85:809 (1952).
11. S. Kirkpatrick and E. P. Stoll, J. Comp. Phys. 40:517 (1981); R. C. Tausworthe, Math.

Comput. 19:201 (1965); S. W. Golomb, Shift Register Sequences (Holden Day, San Fran-
cisco, 1967).

Random-Number Generator for Multispin MC Algorithms 149

12. N. Zierler and J. Brillhart, Inform. Contrib. 14:566 (1969).
13. D. Huse, Phys. Rev. B 24:5180 (1981); S. Ostlund, Phys. Rev. B 24:398 (1981).
14. D. E, Knuth and A. C. Yao, The complexity of nonuniform random number generation,

in Algorithms and Complexity, J. F. Traub, ed. (Academic Press, 1976), pp. 357428.
15. A. J. Guttmann, J. Phys. A 8:1236 (1976).
16. E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B 8:3266 (1973).
17. Le Monde de l'lnformatique (summer 1986).
18. G. Bhanot, D. Duke, and R. Salvador, Phys. Rev. B 33:7841 (1986); J. Stat. Phys. 44:985

(1986).
19. Y. O. Kabe and M. Kikuchi, Contrib. CP 5093 at the 16th International Conference on

Thermodynamics and Statistical Mechanics. (Boston, August 1986).
20. S. F. Reddaway, D. M. Scott, and K. A. Smith, Comp. Phys. Comm. 37:351 (1985).
21. H. J. Herrmann, preprint.
22. M. Creutz, Phys. Rev. Lett. 50:1411 (1983).

