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We develop a novel multispin coded random number generator algorithm to 
compute bits equal to 1 with probability p. Compared to previously used 
algorithms, this generator is at least equally fast and allows for an arbitrary 
accuracy of the computed probability without any significant increase in time. 
An explicit implementation of the algorithm is given for a Cray-1 vector com- 
puter, and the modifications for other machines are discussed. Finally, the 
algorithm is tested by computing the magnetization of the two-dimensional 
Ising model. The measured speed of the program is 57 million spin-flips per 
second. The agreement with theoretical values is found to remain very satisfying 
even when quite close (-~ 0.5 %) to the critical temperature. 

KEY WORDS:  Random numbers; Monte Carlo; multispin coding; parallel 
computation; Ising models. 

1. I N T R O D U C T I O N  

The Monte Carlo (MC) method has proven to be a very powerful way of 
studying statistical systems and phase transitionsJ 1) However, near the 
critical point relaxation times increase dramat ical ly--roughly as 
min(L, ~)~, where L is the linear size of the system, ~ the correlation length 
of an infinite system at the same temperature, and z the dynamic critical 
exponent (2) (z -~ 2 for the Ising model). In order to avoid errors due to the 
finite size of the system or insufficient statistics, one has to use rather large 
lattices and compute an important  number  of configurations. This entails 
an enormous computat ional  demand. A number  of methods have been 
put forward to overcome this difficulty and increase the accuracy of the 
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result (specially designed computers, (3) Monte Carlo renormalization 
techniques, (4) multispin coding techniques, (s'6) vector algorithms, (7) but 
typical configurations always remain to be computed. In all these programs 
the most important part of computational time is devoted to the generation 
of the different configurations, the part devoted to the measurements being 
in most cases negligible. Moreover, in an efficiently written program the 
time spent computing the gain or loss in energy (if one uses an algorithm of 
the Metropolis type (8) of a given transformation is also quite small. Much 
of the time is used to determine bits (i.e., elements of {0, 1}) equal to 1 
with a probability p [ p C  1/2, typically p = e x p ( - f i A E ) ]  necessary to 
decide whether or not the transformation can be accepted. In fact, in many 
MC programs, at least half of the time is spent computing random num- 
bers! In the first multipsin algorithms (7) the determination of the random 
bits was not multispin coded. This problem was solved by Williams and 
Kalos. (6) However, in their algorithm, reducing the time spent in this part 
of the program implies increasing the systematic error on the Boltzmann 
factor p, which from the outset limits the accuracy of the results. This may 
be especially detrimental in models more complicated than the nearest 
neighbor Ising model, i.e., in cases with more than just one energy 
parameter. We here give an algorithm to compute bits with a probability p, 
which is at least as efficient in time as previously used ones, and allows for 
an arbi trary  accuracy without any significant increase in time. The program 
described here has been specially built to take full advantage of the pipeline 
and vector structure of a Cray-1 computer, ~ but with minor changes in 
the program, the algorithm can be used on other general machines as well 
as on specially designed processors or array-processor machines. Finally, to 
test the random-number generator we use it on a Monte Carlo program for 
the 2D Ising model. We compute the magnetization and compare it to the 
exact result./l~ The implementation of the algorithm on a Cray-1 computer 
is given in the Appendix. 

2. S O M E  S I M P L E  R A N D O M - N U M B E R  G E N E R A T O R S  

A very good algorithm commonly used to generate pseudorandom bits 
equal to 1 with probability 1/2 is the one advanced by Kirkpatrick and 
Stoll, (~1) which uses exclusive-or (denoted (~). It generates a sequence of 
random bits by the recursion relation 

r(i)  = r(i -- a) (~ r(i -- b) (2.1) 

where a and b ( a > b )  are numbers (12) chosen in order to obtain the 
maximum period of 2 a -  1. One now has to use these b~/2 bits (i.e., bits 
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equal to 1 with a probability 1/2) to generate bp bits (i.e., bits equal to 1 
with a probability p). 

Let us suppose that p has a binary representation on n bits: 

p = 0.p~ P2 P3"'" P,, (2.2) 

The usual method is to generate a sequence of n b~/2 bits, giving the 
number 

seq = O.b] b i b ; . . ,  bl, (2.3) 

and to compare it with p. The result of the comparison seq < p is obviously 
equal to 1 with a probability p ("true" will be represented by a bit 1). The 
accuracy ofp  is 1/2 n. In order to obtain Boltzmann factors with a sufficient 
accuracy, n must be large enough. There are three simple algorithms to 
perform the comparison: 

Algori thm I. One way (used by Williams and Kalos/61) to perform 
the comparison is to make a bit-by-bit subtraction of.the two numbers seq 
and p. The borrow will give the result of the comparison (0 if seq >~ p). This 
subtraction of two numbers takes four logical operations per bit of p. We 
deal here with bits because, as pointed out previously, (5'6) in order to 
increase the speed of the program, it is convenient to deal with words of 
independent bits. The logical operation handles of course the whole word 
("multispin coding"). This first algorithm can be trivially improved. 

Algori thm 2. If p is known a priori (i.e., if the temperature remains 
fixed), one can write a different program for each p (or group of fixed p) 
and the computation of the borrow takes only one logical operation per bit. 
Another program can generate the instructions before the compilation. 
This method is suitable, for example, for systems with a discrete symmetry, 
where the number of independent Boltzmann factors is small (for example, 
in the 3D Ising model there are only three "a priori" Boltzmann factors at 
a given temperature in the case of a Metropolis-like simulation). 

Algorithm 2 needs n bl/2 bits plus n/l (l is the length of the words) 
instructions to generate a bp bit. Algorithm 1 also uses n b 1~2 bits, but 4n/l 
instructions per bp bit. 

The vectorization of the two algorithms described above is 
straightforward. One deals with a vector of words instead of a single word, 
the algorithms remaining unchanged. Let us assume that it takes one cycle 
to handle a word (this can be sensibly achieved on a vectorized version of 
the programs by using sufficiently long vectors). Then even the "improved" 
version of algorithm 1 introduced as algorithm 2 will require 3n memory 



138 Pierre, Giamarchi, and Schulz 

accesses and n logical operations to generate the needed hi~ 2 bits plus n 
logical operations to compute the lbp bits of a word. On the Cray-1 (and 
certainly on most vector computers) due to the pipeline structure the 2n 
logical operations can be performed during the 3n memory accesses. It will 
thus take at least 3n cycles to compute a word of l bp bits with accuracy n. 
For  the 3D Ising model, for example, which needs three different 
Boltzmann factors, if we want an accuracy of 1 / 2 5 6 - 0 . 4 % ,  at least 72 
cycles will be required simply to generate the random bp bits. This 
obviously constitutes the main part of the program (for the 2D Ising model 
program described below the remaining part of the program takes 12 
logical operations!). Moreover, time increases linearly with the accuracy. 

It is therefore fundamental in MC programs to find a way of reducing 
the time devoted to the random-number generator without any loss in 
accuracy. 

3. A N E W  A L G O R I T H M  

3.1. S i n g l e - B i t  Vers ion  

Let us suppose that we have only a single bp bit r to generate. We do 
not need to subtract seq and p. We only want to compare them, i.e., to find 
the first position after the decimal point where p and seq differ and to com- 
pare the bits at this position. For convenience, we suppose that p has an 
infinite accuracy, i.e., ps is defined for all i > 0. This can be achieved by 
assuming p~ = 0 if i is large. One then has the following algorithm: 

Algorithm 3. We compare b'l with Pl ,  b~ with Pz,-.., until we find N 
such that bN r PN. The result is r = (Pzv > b~v), i.e., r = PN, since b'u r PN" 

Let bi = not (b; | p~). The algorithm simplifies as follows: 

Algorithm 4. We test h i ,  b2,.., until we find N such that b N = 0. The 
result is then r = PN" 

Since the b~ are indkependent bl/2 bits, so are the bi. We thus do not 
need to generate the b; and then to compute the bits b i. It is equivalent and 
simpler to generate directly the bits bi as bl/2 bits. 

Thus N is the number of bi bits used and the position of the first zero 
bi (note that the probability that no zero bi exists is zero). Now, N =  i if 
(bl, b2 ..... b i )=  (1, 1 ..... 1, 0), which happens with a probability 1/U. The 
value of N is 1, 2 ..... n .... with probabilities 1/2, 1/4 ..... 1/2 n, .... The expected 
number of bg used is the average value of N: { N )  = 2. 
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3.2. Multispin Version 

The simultaneous computat ion of several bits with the Algorithm 4 
seems difficult: N (the number  of steps for a given bit) depends randomly 
on the bit computed and is not bounded a priori. We will thus have to stop 
the comparison for different bits at different times and terminate only when 
all the different bits are determined. The test given in Algorithm 4 (b~ = 0) 
does not straightforwardly generalize to several bits in parallel. We give in 
this section a different realization of the same algorithm which can be 
multispin coded. 

In order to determine the termination of the algorithm, let us define 
the sequence s~ of bits by 

s i =  l o i < N  (3.1) 

i.e., s~ = 1 if b 1 = b 2 . . . . .  b i = 1. Hence, s~ = b 1 A b 2 A . - .  A b~ (where /x 
means the logical product AND).  The si can thus be computed using the 
recursion relation: 

So = 1 (3.2) 

S i ~  Si_ 1 A b i 

and si 1 - s i =  1 if i =  N and 0 otherwise. Hence, r, which is PN, can be 
expressed as 

r =  ~ (Si_l--si)Pi (3.3) 
i = 1  

= P l +  ~ ( P i + t - P i )  S, (3.4) 
i = 1  

Equation (3.4) gives the algorithm to compute r: 

A l g o r i t h m  5. We start with r = p~ and So = 1. For  i =  1 to oe: 

1. We computes~=s~  ~Ab~. 

2. If  p~=O and p~+ ~ = l, then we add si to r. 

3. If pi = 1 and Pi+l = 0, then we subtract si from r. 

As long as the b~ are equal to 1, s~ remains equal to 1, and r is set at 
each step to p~+~. During this first phase r oscillates between 0 and 1 for 
each transition 0 --* 1 or 1 --* 0 in p. When b~ is zero for the first time, si 
becomes and remains zero. r does not change any more, and keeps its last 
value PN" We can thus stop at any time when si = 0. 
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This version of the algorithm straightforwardly generalizes to a word 
of independent bits or to vectors of words. One introduces a word (or vec- 
tor) of independent bits si in order to treat a word (vector) of independent 
bits r. The comparison must stop only when all the r's are fixed, which is 
the case if and only if all the si are zero. This test (a word of bits or a 
vector of words is zero) can easily be implemented on any computer. 

Our algorithm permits the use of the arithmetical operations (i.e., 
addition and subtraction) even if we deal with words of independent bits, 
since no carry occurs during the operations involved Algorithm 5 [cf. 
Eq. (3.4) and steps 2 and 3 of Algorithm 5]. We here use the arithmetical 
operations, because on the Cray-1 their cost in time is the same as the cost 
of logical operations, and due to the pipeline structure both kinds of 
operations can be done simultaneously (see Appendix). If on other com- 
puters the arithmetical operations are slower, they can be replaced by a 
logical "exclusive-or" without any change in the algorithm. 

Let us consider the number of operations needed by our algorithm to 
generate in parallel t random by bits. For  a single bit, the number of steps 
needed is the random variable N, taking the values 1, 2 .... with probabilities 
}, J,..., respectively. For t bp bits generated in parallel, we have the indepen- 
dent and identically distributed random variables N1, N2 ..... Nt, where Nj 
is the number of steps needed to compute the j t h  bit. The algorithm stops 
when all the bp bits are generated, which takes a (random) time M =  
m a x ( N 1 ,  N 2 ..... Nt). As M<~k if and only if VjNj<~k, we have 

P(M<~k)= fI P(N/~k)=(1-2 k)t 
j = l  

(3.5) 

It follows that the expected value of M is 

(M}= ~ P(M>k)= ~ [1-(1-2-~) ~] 
k = 0  k = 0  

(3.6) 

As tests are expensive, it is a bad idea to put tests of si too soon. Let us 
suppose we start testing for completion (s/= 0) only at the Llog2 tJth step 
(LxJ means the integer part of x). If M is lower than Llog2 t J, useless steps 
will be made. The number of useless steps is, on the average, 

U =  Llog2 tJ - (min(M, Llog2 t J)5 = Llog2 tJ - 
Llog2 t J  -- 1 

Y, P ( M > k )  (3.7) 
k = 0  

U s i n g e - X ~ > l - x f o r 0 ~ < x ~ l ,  wege t  

1 - e  t2 k<~p(M>k)<< " 1 (3.8) 
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From (3.8), we bound U: 

0~<U~< ~ e-2k-0 .154 (3.9) 
k = l  

which shows that it is really useless to perform tests before the L log2 t j th  
step. The average number of steps performed is, in this case, 

(M2} = {max(m, Llog2 t J)} 

= tlog2 t j+ ~ P(m>k) 
k = tlog2 tJ 

~< ~ min(1, t2 ~)~<log2t+2 (3.10) 
k = 0  

As the number of steps without tests is exactly Llog2 t J -  1, the average 
number of tests performed is at most (log 2 t + 2 ) - ( L l o g 2  t J - 1 ) ~ < 4 .  In 
short, in order to generate one vector of t bp bits, we use on the average 
fewer than log2 t + 2 steps and we perform fewer than four tests. Actually, 
on the Cray-1 we used t=4096 (64 words of 64 bits), and we started 
testing at the 12tb step. 

The expected number of useful steps is { M )  = Y~k=o 1 -  
(1 - - 2 - k )  4096 "~ 13.33. 

The expected number of performed steps is 12 + F~_~21 - 
( 1 - - 2  k)4096,~, 13.49. 

The expected number of performed steps with test is 1 + ~ =  12 1 - -  
(1 - -  2 - k )  4096 "~ 2.49. 

The expected number of useless performed steps is Z l ~ o  (l - 2  k)4096  

~- 0.15. 
It is also useful to notice that the generation of one bl/2 bit costs three 

memory accesses and one logical operation, while the comparison itself 
costs only one logical operation per bit. It is therefore important to limit 
the number of bl/2 bits necessary for the computation of the different bp 
bits. In the 3D Ising model, for example, three Boltzmann factors are 
needed, 

p=e-pJ,  p,=p2, p,,=p3 (3.11) 

Supposing p to be represented on n bits, the exact values of p' and p" are 
respectively represented on 2n and 3n bits. With the method currently used 
(Algorithms 1 and 2), the direct computation of three independent bits r, r', 
and r" with probabilities p, p', and p" results either in a loss of accuracy or 
in a waste of time. However, for a given spin, only one of the three 
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Boltzmann factors p, p', p" is selected. It is thus possible to use the same 
sequences of bl/2 factors to compute the bp associated to a given spin. In 
fact, it is more convenient to generate three independent bits p~, P2, P3 
with the same probability p. The bits r, r', r" are generated by the logical 
products of one, two, or three of these bits p~. It takes three sequences of 
n bl/2 bits because the Pi have to be independent. More generally, let us 
suppose that we have K independent Boltzmann factors for a given spin, 
that we are able to compute simultaneously d bp bits with the same 
sequence of bl/2 bits, and that we find I sets of d numbers 
{a(i, 1) ..... a ( i , d ) } c [ O , l [ ,  i varying from 1 to /, such that all the 
Boltzmann factors can be obtained by 

I 

Pk = I~ a(i, J,.k) (3.12) 
i - - I  

In this formula we use the convention that Ji.k e [0, d] and a(i, 0) = 1. We 
can then compute the bp bits associated to the a(i, j ) , j e  [1, d], for a fixed i 
with the same sequence of bl/2 bits (a different sequence for each i). We can 
obtain the bp bits associated with the Boltzmann factor p~ by the logical 
product of the bp bits associated with the a(i, Ji, k), since they are indepen- 
dant. The determination of the bp bits will thus take 3n x I memory accesses 
at most. For example, let us consider a model (chiral Potts model (~3)) 
where the needed Boltzmann factors are p = exp(-x~) .  The x~ assume the 
values 

E, 2E, 3E, 4E, E -  
(3.13) 

E+e,  2 E - e ,  2E+e,  3 E - e ,  3 E + e  

where E and a are two positive quantities and e < E. The p can be obtained 
by the product of two numbers a(i, j ) = e x p [ - x ( i ,  j ) ]  with two different 
i's. The x(i, j)  take the values 

0, E - a ,  e, 4E (3.14) 

for i =  1, and 

0, E, 2E, 3E (3.15) 

for i=2 .  This corresponds to I = 2 ,  d = 3 ,  and K =  10 in the above 
formulation. All the probabilities for the same i can be generated with the 
same set of bl/2 bits. 
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3.3. Summary  

We use a different program for each temperature. Thus, in the 
generation of a vector of V words of W bits (we have VW= t = 4096 on 
Cray-1) a step consists in (1)the computation of a vector of b m bits, 
which takes 3V memory accesses and V logical operations; and (2) V 
logical operations and V arithmetical operation (or "exclusive-or") 
according to Algorithm 5. 

As previously pointed out, the algorithm will stop after at most 
log2(t) + 2 steps on the average ("at most" will not be repeated in the 
following). If we can compute simultaneously d sequences of probabilities 
with the same b l/2-bit sequence, the complete determination of all the 
Boltzmann factors will thus take 3VI[log2(t)+2] memory accesses, 
VI[log2(t)+2] logical operations, and dVI[log2(t)+2] arithmetical 
operations. Notice that at most I =  FK/dT, where K is the number of dif- 
ferent Boltzmann factors (r 7 denotes nearest upper integer). 

3.4. Discussion and Comparison of the Di f ferent  A lgor i thms 

Let us consider a machine where the time of a scalar (involving a 
single word) operation is S, whereas it is D + V/r for a V-word vector 
operation; D is the startup time and r the vector to scalar speedup ratio. 
We consider the time T needed to compute VWbp bits using the different 
algorithms: 

1. Improved version of the Williams-Kalos algorithm (Algorithm 2). 

We assume that all the logical operations can be performed during the 
memory accesses needed to compute the b~/2 bits. This is the case for a 
Cray-1. One then has 

T2 = 3n(D + V/r) (3.16) 

2. Single-bit version of our algorithm (Algorithm 3), 

T3 = SVW(2) (3.17) 

3. Multispin (scalar) version of our algorithm (Algorithm 5). 

Due to the structure of the algorithm, all the logical and arithmetic 
operations (for one step) can be done simultaneously with the memory 
accesses (cf. the Appendix) needed to compute one b m bit. One has 

Tss = SV[Iog2(W) + 2] (3.18) 

4. Vectorial version of our algorithm (Algorithm 5). 
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The same remark as made in point 3 applies and one has 

Tsv = (D + V/r)[log2( V) + log2(W) + 2] (3.19) 

Equation (3.17) shows that the bit implementation is not efficient on a 
general-purpose computer, due to the gain of time in generating 
simultaneously W bits {there is a ratio T3/Tss=2W/[log2(W)+2]> 1 
between the bit and scalar versions}. 

Equations (3.18) and (3.19) show that the time gained in the vec- 
torization is partially lost because we are dealing with many more bits in 
parallel and are thus making a greater number of useless operations before 
completion. There is an optimal size of the vector that maximizes the 
improvement due to the vectorization. On the Cray-1, we have D = S--  11, 
r = 1, and W--- 64. This gives an optimal size of - 101 for V. We therefore 
choose the maximum size of vectors allowed on Cray-1, V= 64. This gives 
a ratio of ~ 5 between the vector and the scalar versions on a Cray-1. This 
ratio will of course be machine-dependent. 

There is a ratio T2/Tsv---n/[log2(V)+log2(w)+2] between 
Algorithm 2 and our algorithm. Thus, if a good accuracy (large n) is 
needed, our algorithm is faster. Furthermore, due to the structure of our 
algorithm, we are able to compute simultaneously d = 3  (on Cray-1) 
Boltzmann factors. This means that in the case where K Boltzmann factors 
are needed the ratio becomes 

T2/Tsv = Kn/I[log2( WV) + 2] (3.20) 

For  example, for the 3D Ising model (three Boltzmann factors) our 
algorithm is (for an infinite accuracy) 24/14 times as fast as Algorithm 2 
(for only 1/256 of accuracy). 

As far as the number of bl/2 bits needed is concerned, our algorithm is 
not optimal. Fourteen bl/2 bits are required to produce a random bp bit. 
Algorithm 3 (or Algorithm 4) would use only two bl/2 bits per bp bit. As 
already seen, it is not worth implementing it on a general-purpose com- 
puter. But as it involves logical operations only, and necessitates a very 
short sequence of bl/2 bits, it would be perfectably suitable for specially 
designed computers. Furthermore, Knuth and Yao (14) have given an 
optimal method which requires only one b~/2 bit per random bp bit. 
However, this method handles trees. This entails either conditional 
branches or search in tables, i.e., memory accesses, which are both slow 
operations on the Cray-1 as well as on most other machines. 
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4. TESTS 

In order to test the random-number generator, we used it in a MC 
program of the two-dimensional Ising model. The program was written in 
Cray-1 assembler language for reasons of efficiency (and also due to the 
poor optimization of the Fortran compiler). The instructions of the 
random-number generator were generated by a Fortran program for each 
temperature. We limited ourselves to 40 bits of accuracy ( ~  10 -12) in the 
determination of the probabilities. All computations were made on a 
256 x 256 lattice with periodic boundary conditions. As our purpose was 
not to make real physical measurements on the 2D Ising model, we limited 
ourselves to the magnetization. The initial configuration is the totally 
ordered one ( T =  0). After an equilibration of approximately 2 x 10  4 spin- 
flip attempts for each spin, the magnetization of the whole lattice is 
measured after each passage through the whole system. The results are 
given in Table I with the exact values (1~ and an estimate of error bars. The 
errors bars are estimated by 

6m ~- (2rz /nL2)  l/2 (4.1) 

w h e r e  L 2 is the number of spins in the lattice, n the number of 
measurements, Z the static susceptibility, and r the autocorrelation time for 
the magnetization. We have 10 5 measurements at each temperature. The 
numerical values of Z and r are taken respectively from Refs. 15 and 16. 
Computed and exact values of the magnetization agree, even when close to 
the critical temperature. In order to measure the speed of the program, we 
used the crude formula 

(number of spins)(number of passes) 
rate of spin - flip = (4.2) 

time 

Tablel .  R e s u l t s  of the Simulation on t h e 2 D I s i n g  M o d e l  ~ 

Temperature 
Exact  M e a s u r e d  Es t ima ted  

magne t i za t i on  magne t i za t i on  abso lu te  er ror  

1 0.911319 0.911337 5 x 10 -5 
1.111111 0.749323 0.748497 10 -3 

1.127395 0.648460 0.656104 9 x 10 -3 

1.132502 0.556154 0.58429 8 x 10 -2 

a In our  uni ts  the cri t ical  t empe ra tu r e  is 1.1345927. 

822/48/1-2-10 
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The time includes the measurements, which are expected to be negligible. 
On the Cray-1 on which the program was run, the measured rate was 57 
million flips per second. This value is to be compared with the speed of the 
other programs in the literature. As we are able to compute three 
Boltzmann factors simultaneously, a 3D Ising model with this random- 
number generator will reach nearly the same speed. For  practical reasons, 
we cannot perform simulations on another  vector machine than the Cray-1. 
We therefore give a comparison of the speed of the different vector 
machines(17): the estimated speed of a Cray-1 is 0.16 gigaflops, whereas it is 
0.4 gigaflops for a Cyber 205 6 x 2 and 1.3 gigaflops for a NEC SX-2. We 
can use these numbers to estimate the speed of our program on these 
machines. This gives an extrapolated speed of 142 million flips per second 
on a Cyber 205 and 463 on a SX-2 computer. Of  course this estimation has 
to be taken with great care: we assume that this speed is a good indication 
of the performance of the machines when performing vector operations, 
even if logical rather than floating-point operations are concerned. It is not 
obvious that this will hold in every case. The specific instructions or struc- 
ture of each machine can also affect the performances. One can nevertheless 
see that our program should be, if not faster than, at least comparable in 
speed with the other canonical algorithms when implemented on the same 
machine [98 million flips per second on a two-pipe Cyber 205~8); 251 on a 
Nec 8X-209); 218 on an Array processor (2~ (the ICL array processor has a 
cycle time of 200 nsec and handles 64 x 64 bits simultaneously; the cycle 
time of the Cray-1 is 12.5 nsec and 64 bits are updated in one cycle; so we 
expect a ratio of four between the array processor and the Cray-1)].  
Moreover,  the performances of our program are not related to a specific 
size of the lattice, and we can evaluate the Boltzmann factors with an 
infinite precision. We are also free from the problem of correlation of ran- 
dom numbers that arises in Ref. 18. Of course for the Ising model it is 
much more efficient to use a microcanonical algorithm (2m2) (the best way 
to solve the random-number  generator problem!). But it is not obvious 
that for more complicated cases such an efficient and simple implemen- 
tation can be found. (2~) In addition, the microcanonical algorithms have 
longer relaxation time than the canonical ones. 

5. C O N C L U S I O N  

We have here presented a new random-number  generator to compute 
bits equal to 1 with a probabili ty p. This generator is adapted to multispin 
coding and offers a small computat ional  time as well as an arbitrary 
accuracy in probabili ty without any significant increase in computational  
time. Although it was designed to run on vector computers, since it uses 
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logical operations only, it is perfectly implementable on other systems. Its 
performances could even be improved on specially designed machines or 
array processors where one can dispose of more than one logical unit 
(which is not the case on general-purpose processors). 

APPENDIX  

We give here the schematic implementation of the algorithm on a 
Cray-1 computer. Table II shows how vector resources of a Cray-1 are 
used to compute three nonindependent vectors of b p  bits from the same 
sequence of b~/z bits. 

In boldface we represent one step of the algorithm described in 
Section 3.2. 

Me, Me_b, and Me_" stand for parts of the memory of addresses i, 
i - b ,  and i - a .  

Each of the Bi, B;, BT, Si, Re, R~, R;',... stands for one of the eight 
vector registers. 

On respectively first, second, and third lines are the memory accesses, 
the logical operations, and the arithmetical operations. 

Three operations in a same column can be simultaneous, since they do 
not use the same operands. However, the result of an operation can be 
used immediately in another operation as it occurs for B~' and Se. 

Si L 0 means that we check that all bits of vector Si are zero and stop 
the computation if true. 

T a b l e l l .  A Schematic Description of the Implementation of the  
A l g o r i t h m  on a Cray-1 Computer 

Clockcycle 3i Clockcycle 3i + 1 Clockcycle 3i + 2 

B~ +-- M i _  b B~' +- M i _  . M i ~-- B i 

S i 1.~--Si_2 A Bi_  1 B I ~ B ~ G B  [' ( S i - t  ~ O) 

( R , ~  R,  ~ + S~_~) (R; ~ R'~-I +-S, 1) (R; , ~--- R'i'-l q- S i - l )  

Clockcycle 3i + 3 Clockcycle 3i + 4 Clockcycle 3i + 5 

B'i+ l ~--- Mi+  l_  b B~'+ I ~--- Mi+  I_ . M i +  l ,,.--- Bi+ t 

Si~-- Si_ 1 A B i Bi+I~--B~+I~B~'+I (S i L 0) 

( l t i  + 1 ~-- Ri ~ Si)  (R'i + 1 4-- R~ -[- Si)  (R7+ 1 ~- R~' _+ Si)  
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The sequences Ri, R;, R;' have, at the end of the calculus, the values 
R, R', R". Let p, p', and p" be the probabilities that the bits of R, R', and 
R" are 1. If p = 0 ,  PIP2,..., then (Ri+l , -Ri+_Si) stands for 

R i + I . - - R i + S  i if p i = 0  andpt+ l=  1 

Ri+ 1 +-- R i -  Si i f  Pi = 1 a n d  Pi+ 1 = 0 

nothing if p~= Pc+ 1 (which happens in half of the cases) 

Actually, the three optional arithmetical operations are performed as soon 
as possible, so no arithmetical operation occurs during the last third of 
most of the steps. 

(Si ~ 0) is performed only when i>~ 13. Thus, as explained before, 
there will be only an average of two steps with tests during the calculation. 

These last two points are fortunate, because R~'+~,--R;'+S~ and 
Si ~- 0 cannot be simultaneous, since they both use S~. In bad cases, the 
steps are longer. 
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